Title of article :
Convergence theorem for I -asymptotically quasi-nonexpansive mapping in Hilbert space
Author/Authors :
Seyit Temir ?، نويسنده , , Ozlem Gul، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
7
From page :
759
To page :
765
Abstract :
Let H be a Hilbert space with inner product (·,·) and · norm, and let K be weakly compact a subset of H. Let T :K →K be nonlinear mapping and I :K →K be a nonlinear bounded mapping. In this paper, we define the I -asymptotically quasi-nonexpansive mapping in Hilbert space. If T is an I -asymptotically quasi-nonexpansive mapping, then we prove that 1 n n−1 i=0 T iu, for u ∈ K as n→∞, is weakly almost convergent to its asymptotic center. © 2006 Elsevier Inc. All rights reserved.
Keywords :
Nonlinear ergodic theorems , Asymptotic center , Asymptotically quasi-nonexpansive mapping
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2007
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
935580
Link To Document :
بازگشت