Title of article :
Notes on the Duren–Leung conjecture
Author/Authors :
Jian-Lin Li، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Abstract :
For the logarithmic coefficients γn of a univalent function f (z) = z+a2z2 +· · · ∈ S, the well-known de
Branges’ theorem shows that
Mn(f ) := 1
n
n −1
m=1
m
k=1
1
k
− k|γk
|2
0 (n = 2, 3, . . .).
In this note, we first use properties ofMn(f ) to obtain some identities for γn, we then show that the Duren–
Leung conjecture
n
k=1
|γk
|2
n
k=1 1/k2 (n 3) holds in the case when |a2| (4 − 75δ/26)1/2 =
1.76 . . . or when f is not Koebe function and n max{75δ/(26(1 −|γ1|2))−1, 3} is an integer, where δ is
the Milin constant. Finally we give several remarks on a related question.
© 2006 Elsevier Inc. All rights reserved
Keywords :
Logarithmic coefficients , de Branges’ theorem , Milin constant
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications