Title of article :
Vibrations of extensible beams: Unilateral problem
Author/Authors :
M.D.G. da Silva ?، نويسنده , , L.A. Medeiros، نويسنده , , A.C. Biazutti، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Abstract :
The present work is dedicated to study a unilateral problem relating to the operator
Lu(x, t) =
∂2u
∂t2 − ˆa(t)+ ˆb(t)
β(t) α(t) ∂u
∂x 2
dx ∂2u
∂x2 +q
∂4u
∂x4 ,
which models small transverse deflections u(x, t) of an extensible beam with moving ends. Without restriction
on the initial configuration u0 and considering the initial velocity u1 with a bounded gradient,
we succeed to prove that, given T an arbitrary positive real number, there exists a unique solution for the
unilateral problem defined for all t ∈ [0,T ].
© 2006 Elsevier Inc. All rights reserved
Keywords :
Extensible beams , Unilateral problem , Moving hinged ends , Penalty method , Nonlocal solutions
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications