Title of article :
An induction principle for the weighted p-energy
minimality of x/|x|
Author/Authors :
Jean-Christophe Bourgoin، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Abstract :
In this paper, we investigate minimizing properties of the map x/|x| from the Euclidean unit ball Bn
to its boundary Sn−1, for the weighted energy functionals En
p,α(u) = Bn |x|α|∇u|p dx, where p 2.
We establish the following induction principle: if the map x
|x| :Bn+1 →Sn minimizes En+1
p,α among maps
u:Bn+1 →Sn satisfying u(x) = x on Sn, then the map y
|y| :Bn →Sn−1 minimizes En
p,α+1 among maps
v :Bn→Sn−1 satisfying v(y) = y on Sn−1.
This result enables us to enlarge the range of values of p and α for which x/|x| minimizes En
p,α.
© 2006 Elsevier Inc. All rights reserved.
Keywords :
p-Harmonic maps , weighted energy , Minimizing maps
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications