Title of article :
Calderón–Zygmund operators on amalgam spaces and in the discrete case
Author/Authors :
Norio Kikuchi، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
15
From page :
198
To page :
212
Abstract :
We prove the boundedness of Calderón–Zygmund operators on weighted amalgam spaces (Lp, q w)(Rn) for 1 < p,q <∞ with Muckenhoupt weights. To do this, we show the boundedness in the discrete case, i.e. the boundedness on q w(Zn). We also investigate on (Lp, ∞w )(Rn). As an application we consider an operator related to the Navier–Stokes equation. © 2007 Elsevier Inc. All rights reserved
Keywords :
Calder?n–Zygmund operator , Amalgam space , Singular integral , Riesz transform , Discrete case , Muckenhoupt weights , Navier–Stokes equation
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2007
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
936179
Link To Document :
بازگشت