Title of article :
An Lp inequality for polynomials
Author/Authors :
M.A. Qazi، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Abstract :
Let Pn be the class of all polynomials of degree at most n, and letMp(g;ρ) denote the Lp mean of g on
the circle of radius ρ centered at the origin. We specify a number ρ∗ ∈ (0, 1), depending on n and k, such
that for any f ∈ Pn, the ratio Mp(f (k);ρ)/Mp(f ;1) is maximized by f (z) := zn for all ρ ∈ [ρ∗,∞)
and p 1. The interest of the result lies in the fact that ρ∗ is strictly less than 1.
© 2007 Elsevier Inc. All rights reserved
Keywords :
Bernstein’s inequality , Zygmund’s inequality , polynomials
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications