Title of article
Weighted Berezin transform in the polydisc
Author/Authors
Jaesung Lee and C. Pozrikidis، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 2008
Pages
5
From page
1489
To page
1493
Abstract
For c > −1, let νc denote a weighted radial measure on C normalized so that νc(D) = 1. If f is harmonic and integrable
with respect to νc over the open unit disc D, then D(f ◦ ψ)dνc = f (ψ(0)) for every ψ ∈ Aut(D). Equivalently f is invariant
under the weighted Berezin transform; Bcf = f . Conversely, does the invariance under the weighted Berezin transform imply the
harmonicity of a function? In this paper, we prove that for any 1 p <∞ and c1, c2 > −1, a function f ∈ Lp(D2, νc1 × νc2 )
which is invariant under the weighted Berezin transform; Bc1,c2f = f needs not be 2-harmonic.
© 2007 Elsevier Inc. All rights reserved.
Keywords
harmonic function , Mean value property , Weighted Berezin transform
Journal title
Journal of Mathematical Analysis and Applications
Serial Year
2008
Journal title
Journal of Mathematical Analysis and Applications
Record number
936594
Link To Document