Title of article :
Stability of an alternative functional equation
Author/Authors :
Bogdan Batko a، نويسنده , , b، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Abstract :
Let f : S→X map an abelian semigroup (S,+) into a Banach space (X · ).We deal with stability of the following alternative
functional equation
f (x +y) +f (x)+ f (y) = 0 ⇒ f (x + y) = f (x) +f (y).
We assume that
f (x + y)+ f (x) +f (y) >Φ1(x, y) ⇒ f (x +y) −f (x) −f (y) Φ2(x, y)
for all x,y ∈ S, where Φ1,Φ2 : S →R+ are given functions and prove that, under some additional assumptions on Φ1,Φ2, there
exists a unique additive mapping a : S→X such that
f (x)− a(x) Ψ(x) for x ∈ S,
where Ψ : S→R+ is a function which can be explicitly computed starting from Φ1 and Φ2.
© 2007 Elsevier Inc. All rights reserved
Keywords :
stability , Approximate solution , Alternative equation , Conditional Cauchy equation
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications