Title of article :
New trigonometric sums by sampling theorem
Author/Authors :
H.A. Hassan، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
17
From page :
811
To page :
827
Abstract :
We use a sampling theorem associated with second-order discrete eigenvalue problems to derive some trigonometric identities extending the results of Byrne and Smith [G.J. Byrne, S.J. Smith, Some integer-valued trigonometric sums, Proc. Edinburg Math. Soc. 40 (1997) 393–401]. We derive both integral and non-integral valued trigonometric sums. We give illustrative examples involving representations of the trigonometric sums n k=0 cot2m((2k +1)π/2(2n+1)) and n k=0 tan2m(kπ/(2n + 1)) in an integral-valued polynomial in (2n+1) of degree 2m, m = 1, 2, . . . . © 2007 Elsevier Inc. All rights reserved.
Keywords :
difference operator , Finite sampling expansion , Lagrange’s interpolation expansion
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2008
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
936665
Link To Document :
بازگشت