Title of article :
Spectra and essential spectral radii of composition operators on weighted Banach spaces of analytic functions
Author/Authors :
José Bonet ، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
8
From page :
884
To page :
891
Abstract :
We determine the spectra of composition operators acting on weighted Banach spaces H∞v of analytic functions on the unit disc defined for a radial weight v, when the symbol of the operator has a fixed point in the open unit disc. We also investigate in this case the growth rate of the Koenigs eigenfunction and its relation with the essential spectral radius of the composition operator. © 2007 Elsevier Inc. All rights reserved
Keywords :
Weighted Bergman spaces of infinite order , Spectrum , Composition operators , Essential spectral radius , Koenigs eigenfunction
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2008
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
936796
Link To Document :
بازگشت