Title of article :
Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces
Author/Authors :
Gang Wu ?، نويسنده , , Jia Yuan، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
10
From page :
1326
To page :
1335
Abstract :
In this paper we study the Cauchy problem for the semilinear fractional power dissipative equation ut +(− )αu = F(u) for the initial data u0 in critical Besov spaces B˙σ 2,r with σ n2 − 2α−d b , whereα >0, F(u) = P(D)ub+1 with P(D) being a homogeneous pseudo-differential operator of order d ∈ [0, 2α) and b > 0 being an integer. Making use of some estimates of the corresponding linear equation in the frame of mixed time–space spaces, the so-called “mono-norm method” which is different from the Kato’s “double-norm method,” Fourier localization technique and Littlewood–Paley theory, we get the well-posedness result in the case σ >−n2 . © 2007 Elsevier Inc. All rights reserved
Keywords :
Dissipative equation , Cauchy problem , well-posedness , Besov spaces , Fourier localization , Littlewood–Paley theory
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2008
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
936833
Link To Document :
بازگشت