Title of article :
On global stability of the intra-host dynamics of malaria
and the immune system
Author/Authors :
J. Tumwiine، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Abstract :
In this paper we consider an intra-host model for the dynamics of malaria. The model describes the dynamics of the blood
stage malaria parasites and their interaction with host cells, in particular red blood cells (RBC) and immune effectors.We establish
the equilibrium points of the system and analyze their stability using the theory of competitive systems, compound matrices and
stability of periodic orbits. We established that the disease-free equilibrium is globally stable if and only if the basic reproduction
number satisfies R0 1 and the parasite will be cleared out of the host. If R0 > 1, a unique endemic equilibrium is globally stable
and the parasites persist at the endemic steady state. In the presence of the immune response, the numerical analysis of the model
shows that the endemic equilibrium is unstable.
© 2007 Elsevier Inc. All rights reserved.
Keywords :
immune response , Global stability , Malaria parasites , Reproduction number
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications