Title of article :
An improvement of Montel’s criterion
Author/Authors :
Yan Xu، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
5
From page :
1075
To page :
1079
Abstract :
Let F be a family of holomorphic functions in a domain D, and let a(z), b(z) be two holomorphic functions in D such that a(z) ≡ b(z), and a(z) ≡ a (z) or b(z) ≡ b (z). In this paper, we prove that: if, for each f ∈ F, f (z) − a(z) and f (z) − b(z) have no common zeros, f (z) = a(z) whenever f (z) = a(z), and f (z) = b(z) whenever f (z) = b(z) in D, then F is normal in D. This result improves and generalizes the classical Montel’s normality criterion, and the related results of Pang, Fang and the first author. Some examples are given to show the sharpness of our result. © 2008 Elsevier Inc. All rights reserved
Keywords :
holomorphic function , normal family , Montel’s criterion
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2008
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
937167
Link To Document :
بازگشت