Title of article :
On an extension of the Blaschke–Santaló inequality and the hyperplane conjecture
Author/Authors :
David Alonso-Gutiérrez 1، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
9
From page :
292
To page :
300
Abstract :
Let K be a symmetric convex body and K ◦ its polar body. Call φ(K) = 1 |K||K ◦| K K ◦ x,y 2 dy dx. It is conjectured that φ(K) is maximum when K is an ellipsoid. In particular this statement implies the Blaschke–Santaló inequality and the hyperplane conjecture. We verify this conjecture when K is restricted to be a p-ball. © 2008 Elsevier Inc. All rights reserved.
Keywords :
Hyperplane conjecture , Convex bodies , Asymptotic geometric analysis , Blaschke–Santal?
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2008
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
937194
Link To Document :
بازگشت