Title of article :
On an extension of the Blaschke–Santaló inequality
and the hyperplane conjecture
Author/Authors :
David Alonso-Gutiérrez 1، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Abstract :
Let K be a symmetric convex body and K
◦ its polar body. Call
φ(K) = 1
|K||K
◦|
K
K
◦
x,y 2 dy dx.
It is conjectured that φ(K) is maximum when K is an ellipsoid. In particular this statement implies the Blaschke–Santaló inequality
and the hyperplane conjecture. We verify this conjecture when K is restricted to be a p-ball.
© 2008 Elsevier Inc. All rights reserved.
Keywords :
Hyperplane conjecture , Convex bodies , Asymptotic geometric analysis , Blaschke–Santal?
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications