Title of article :
Global unique solvability of 3D MHD equations in a thin periodic domain
Author/Authors :
Igor Chueshov، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
11
From page :
224
To page :
234
Abstract :
We study magnetohydrodynamic equations for a viscous incompressible resistive fluid in a thin 3D domain. We prove the global existence and uniqueness of solutions corresponding to a large set of initial data from Sobolev type space of the order 1/2 and forcing terms from L2 type space. We also show that the solutions constructed become smoother for positive time and prove the global existence of (unique) strong solutions
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2008
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
937425
Link To Document :
بازگشت