Author/Authors :
Janusz Matkowski a، نويسنده , , b، نويسنده , , ?، نويسنده ,
Abstract :
Let (Ω,Σ,μ) a measure space such that 0 < μ(A) < 1 < μ(B) < ∞ for some A, B ∈ Σ.
Under some natural conditions on the bijective functions ϕ,ϕ1,ϕ2,ψ,ψ1,ψ2 : (0,∞)→
(0,∞) we prove that if
ψ Ω(x+y)
ϕ ◦ (x+y)dμ ψ1 Ω(x)
ϕ1 ◦ xdμ +ψ2 Ω(y)
ϕ2 ◦ ydμ
for all nonnegative μ-integrable simple functions x, y : Ω →R (where Ω(x) stands for the
support of x, then there exists a real p 1 such that
ϕ(t)
ϕ(1) =
ϕi (t)
ϕi (1) =t p,
ψ(t)
ψ(1) =
ψi (t)
ψi (1) =t1/p, i = 1, 2.
Some generalizations and relevant results for the reversed inequality are also presented.