Title of article :
An Oscillating Integral in Ḃ0,11(Rn)
Author/Authors :
D.S. Fan، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 1994
Pages :
17
From page :
986
To page :
1002
Abstract :
This paper considers a convolution operator Tƒ = P.V. Ω * ƒ with Ω(x) = K(x)eih(x), where K(x) is a Calderón-Zygmund kernel and h(x) is a real-valued differentiable function satisfying (1.3). We prove that the operator T extends to a bounded operator in the Besov space Ḃ0,11(Rn) if and only if T is bounded in L2(Rn).
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
1994
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
938363
Link To Document :
بازگشت