Title of article :
Simple tool to evaluate the impact of daylight on building
energy consumption
Author/Authors :
Christian Anker Hviid a، نويسنده , , b، نويسنده , , *، نويسنده , , Toke Rammer Nielsen، نويسنده , , Svend Svendsen، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2008
Abstract :
This paper presents a simple building simulation tool for integrated daylight and thermal analysis. The tool is capable of importing
the thermal and visual properties for different glazings and shading positions from the Window Information System (WIS) program. A
coupled ray-tracing and radiosity methodology is used to derive the daylight levels for different sky conditions. Both detailed daylight
distribution for a particular day and time and hourly discrete values on a yearly basis may be obtained. For an integrated simulation the
hourly daylight levels are fed into an existing simple thermal simulation program capable of calculating energy demand and the indoor
environment. Straightforward control systems for general and task lighting systems have been implemented together with a shading control
strategy that adjusts the shading according to the indoor operative temperature, the risk of glare and the profile angle of the sun. The
implemented daylight calculation method allows for shades from the window recess and overhang, and for distant shades blocking the
sky vault. Comparisons with the ray-tracing program Radiance show that the accuracy of this approach is adequate for predicting the
energy implications of photoresponsive lighting control. The amount of input is small, which makes the tool useful for integrated daylight
optimisation in the early design process.
2008 Elsevier Ltd. All rights reserved.
Keywords :
Daylight , validation , radiosity , integrated design , SIMULATION , Building design
Journal title :
Solar Energy
Journal title :
Solar Energy