Title of article :
An iterative working-set method for large-scale nonconvex quadratic programming Original Research Article
Author/Authors :
Nicholas I.M. Gould، نويسنده , , Philippe L. Toint، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
20
From page :
109
To page :
128
Abstract :
We consider a working-set method for solving large-scale quadratic programming problems for which there is no requirement that the objective function be convex. The methods are iterative at two levels, one level relating to the selection of the current working set, and the second due to the method used to solve the equality-constrained problem for this working set. A preconditioned conjugate gradient method is used for this inner iteration, with the preconditioner chosen especially to ensure feasibility of the iterates. The preconditioner is updated at the conclusion of each outer iteration to ensure that this feasibility requirement persists. The well-known equivalence between the conjugate-gradient and Lanczos methods is exploited when finding directions of negative curvature. Details of an implementation—the Fortran 90 package QPA in the forthcoming GALAHAD library—are given.
Journal title :
Applied Numerical Mathematics
Serial Year :
2002
Journal title :
Applied Numerical Mathematics
Record number :
942262
Link To Document :
بازگشت