Title of article :
Padé and Gregory error estimates for the logarithm of block triangular matrices Original Research Article
Author/Authors :
Jo?o R. Cardoso، نويسنده , , F. Silva Leite، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
15
From page :
253
To page :
267
Abstract :
In this paper we give bounds for the error arising in the approximation of the logarithm of a block triangular matrix T by Padé approximants of the function f(x)=log[(1+x)/(1−x)]f(x)=log[(1+x)/(1−x)] and partial sums of Gregoryʹs series. These bounds show that if the norm of all diagonal blocks of the Cayley-transform B=(T−I)−1(T+I)B=(T−I)(T+I)−1 is sufficiently close to zero, then both approximation methods are accurate. This will contribute for reducing the number of successive square roots of T needed in the inverse scaling and squaring procedure for the matrix logarithm.
Journal title :
Applied Numerical Mathematics
Serial Year :
2006
Journal title :
Applied Numerical Mathematics
Record number :
942657
Link To Document :
بازگشت