Title of article :
Exponential time integration and Chebychev discretisation schemes for fast pricing of options Original Research Article
Author/Authors :
D.Y. Tangman، نويسنده , , A. Gopaul، نويسنده , , M. Bhuruth، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
11
From page :
1309
To page :
1319
Abstract :
We consider exponential time differencing (ETD) schemes for the numerical pricing of options. Special treatments for the implementation of the boundary conditions that arise in finance are described. We show that only one explicit time step computation gives unconditional second order accuracy for European, Barrier and Butterfly spread options under both Black–Scholes geometric Brownian motion model and Mertonʹs jump diffusion model with constant coefficients. In comparison, the commonly used Crank–Nicolson scheme is shown to be only conditionally stable due to lack of L0L0-stability. Finally, we describe how the use of spectral spatial discretisation based on a Chebychev grid point concentration strategy gives fourth order accurate option prices for both the Black–Scholes and Mertonʹs jump–diffusion model.
Journal title :
Applied Numerical Mathematics
Serial Year :
2008
Journal title :
Applied Numerical Mathematics
Record number :
942840
Link To Document :
بازگشت