Author/Authors :
Arie Bialostocki، نويسنده , , Hanno Lefmann، نويسنده , , Terry Meerdink، نويسنده ,
Abstract :
In this paper we investigate the behaviour of the solutions of equations ΣI=1n aixi = b, where Σi=1n, ai = 0 and b ≠ 0, with respect to colorings of the set N of positive integers. It turns out that for any b ≠ 0 there exists an 8-coloring of N, admitting no monochromatic solution of x3 − x2 = x2 − x1 + b. For this equation, for b odd and 2-colorings, only an odd-even coloring prevents a monochromatic solution. For b even and 2-colorings, always monochromatic solutions can be found, and bounds for the corresponding Rado numbers are given. If one imposes the ordering x1 < x2 < x3, then there exists already a 4-coloring of N, which prevents a monochromatic solution of x3 − x2 = x2 − x1 + b, where b ϵ N.