Title of article :
Circumferences in 1-tough graphs Original Research Article
Author/Authors :
Hao Li، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
7
From page :
145
To page :
151
Abstract :
Bauer, Morgana, Schmeichel and Veldman have conjectured that the circumference c(G) of any 1-tough graph G of order n ⩾ 3 with minimum degree δ ⩾ n/3 is at least min{n,(3n + 1)/4 + δ/2} ⩾ (11n + 3)/12. They proved that under these conditions, c(G) ⩾ min{n, n/2 + δ} ⩾ 5n/6. Then Bauer, Schmeichel and Veldman improved this result by getting c(G) ⩾ min{n, n/2 + δ + 1} ⩾ 5n/6 + 1. We show in this paper that c(G) ⩾ min{n, (2n + 1 + 2δ)/3, (3n + 2δ - 2)/4} ⩾ min{(8n + 3)/9, (11n - 6)/12}.
Journal title :
Discrete Mathematics
Serial Year :
1995
Journal title :
Discrete Mathematics
Record number :
946194
Link To Document :
بازگشت