Title of article :
Dualities and the phase diagram of the p-clock model Original Research Article
Author/Authors :
R. Estrada and G. Ortiz، نويسنده , , E. Cobanera، نويسنده , , Z. Nussinov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
35
From page :
780
To page :
814
Abstract :
A new “bond-algebraic” approach to duality transformations provides a very powerful technique to analyze elementary excitations in the classical two-dimensional XY and p-clock models. By combining duality and Peierls arguments, we establish the existence of non-Abelian symmetries, the phase structure, and transitions of these models, unveil the nature of their topological excitations, and explicitly show that a continuous U(1) symmetry emerges when image. This latter symmetry is associated with the appearance of discrete vortices and Berezinskii–Kosterlitz–Thouless-type transitions. We derive a correlation inequality to prove that the intermediate phase, appearing for image, is critical (massless) with decaying power-law correlations.
Keywords :
XY model , Topological excitations , Peierls argument , BKT transition , Griffiths inequality , Bond algebras , Discrete vortices , p-Clock model , Duality
Journal title :
Nuclear Physics B
Serial Year :
2012
Journal title :
Nuclear Physics B
Record number :
946358
Link To Document :
بازگشت