Title of article :
Note on the 3-graph counting lemma Original Research Article
Author/Authors :
Brendan Nagle، نويسنده , , Vojt?ch R?dl، نويسنده , , Mathias Schacht، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
17
From page :
4501
To page :
4517
Abstract :
Szemerédiʹs regularity lemma proved to be a powerful tool in extremal graph theory. Many of its applications are based on the so-called counting lemma: if image is a image-partite graph with image-partition image, image, where all induced bipartite graphs image are image-regular, then the number of image-cliques image in image is image. Frankl and Rödl extended Szemerédiʹs regularity lemma to 3-graphs and Nagle and Rödl established an accompanying 3-graph counting lemma analogous to the graph counting lemma above. In this paper, we provide a new proof of the 3-graph counting lemma.
Keywords :
Szemerédiיs regularity lemma , Hypergraph regularity lemma , Counting lemma
Journal title :
Discrete Mathematics
Serial Year :
2008
Journal title :
Discrete Mathematics
Record number :
947066
Link To Document :
بازگشت