Title of article :
An answer to Hirasaka and Muzychuk: Every p-Schur ring over image is Schurian
Author/Authors :
Pablo Spiga، نويسنده , , Qiang Wang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
4
From page :
1760
To page :
1763
Abstract :
In Hirasaka and Muzychuk [An elementary abelian group of rank 4 is a CI-group, J. Combin. Theory Ser. A 94 (2) (2001) 339–362] the authors, in their analysis on Schur rings, pointed out that it is not known whether there exists a non-Schurian p-Schur ring over an elementary abelian p-group of rank 3. In this paper we prove that every p-Schur ring over an elementary abelian p-group of rank 3 is in fact Schurian.
Keywords :
Elementary abelian group , Planar function , Schurian Schur ring
Journal title :
Discrete Mathematics
Serial Year :
2008
Journal title :
Discrete Mathematics
Record number :
947258
Link To Document :
بازگشت