Title of article :
A Riemann hypothesis analogue for invariant rings Original Research Article
Author/Authors :
Tetsuo Harada and Tadashi Hatano، نويسنده , , Makoto Tagami، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
17
From page :
2552
To page :
2568
Abstract :
A Riemann hypothesis analogue for coding theory was introduced by I.M. Duursma [A Riemann hypothesis analogue for self-dual codes, in: A. Barg, S. Litsyn (Eds.), Codes and Association Schemes (Piscataway, NJ, 1999), American Mathematical Society, Providence, RI, 2001, pp. 115–124]. In this paper, we extend zeta polynomials for linear codes to ones for invariant rings, and we investigate whether a Riemann hypothesis analogue holds for some concrete invariant rings. Also we shall show that there is some subring of an invariant ring such that the subring is not an invariant ring but extremal polynomials all satisfy the Riemann hypothesis analogue.
Keywords :
Zeta polynomial , Riemann hypothesis analogue , Invariant rings , Extremal codes , MacWilliams transform
Journal title :
Discrete Mathematics
Serial Year :
2007
Journal title :
Discrete Mathematics
Record number :
947599
Link To Document :
بازگشت