Title of article :
Entropy and the timing capacity of discrete queues
Author/Authors :
B.، Prabhakar, نويسنده , , R.، Gallager, نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2003
Pages :
-356
From page :
357
To page :
0
Abstract :
Queueing systems which map Poisson input processes to Poisson output processes have been well-studied in classical queueing theory. This paper considers two discrete-time queues whose analogs in continuous-time possess the Poisson-in-Poisson-out property. It is shown that when packets arriving according to an arbitrary ergodic stationary arrival process are passed through these queueing systems, the corresponding departure process has an entropy rate no less (some times strictly more) than the entropy rate of the arrival process. Some useful by-products are discrete-time versions of: (i) a proof of the celebrated Burkeʹs (1956) theorem, (ii) a proof of the uniqueness, amongst renewal inputs, of the Poisson process as a fixed point for exponential server queues proposed by Anantharam (1993), and (iii) connections with the timing capacity of queues described by Anantharam and Verdu (1996).
Keywords :
Patients
Journal title :
IEEE Transactions on Information Theory
Serial Year :
2003
Journal title :
IEEE Transactions on Information Theory
Record number :
94820
Link To Document :
بازگشت