Title of article :
Kernels in pretransitive digraphs Original Research Article
Author/Authors :
Hortensia Galeana-S?nchez، نويسنده , , Roc?́o Rojas-Monroy، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
8
From page :
129
To page :
136
Abstract :
Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. A kernel N of D is an independent set of vertices such that for every w∈V(D)−N there exists an arc from w to N. A digraph D is called right-pretransitive (resp. left-pretransitive) when (u,v)∈A(D) and (v,w)∈A(D) implies (u,w)∈A(D) or (w,v)∈A(D) (resp. (u,v)∈A(D) and (v,w)∈A(D) implies (u,w)∈A(D) or (v,u)∈A(D)). This concepts were introduced by P. Duchet in 1980. In this paper is proved the following result: Let D be a digraph. If D=D1∪D2 where D1 is a right-pretransitive digraph, D2 is a left-pretransitive digraph and Di contains no infinite outward path for i∈{1,2}, then D has a kernel.
Keywords :
Kernel-perfect digraph , Right-pretransitive digraph , Left-pretransitive digraph , Kernel
Journal title :
Discrete Mathematics
Serial Year :
2004
Journal title :
Discrete Mathematics
Record number :
948734
Link To Document :
بازگشت