Title of article :
Minimal
Author/Authors :
M.I. Ostrovskii، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
8
From page :
219
To page :
226
Abstract :
Let G be a graph and let T be a tree with the same vertex set. Let e be an edge of T and Ae and Be be the vertex sets of the components of T obtained after removal of e. Let EG(Ae,Be) be the set of edges of G with one endvertex in Ae and one endvertex in Be. Letec(G:T)≔maxe |EG(Ae,Be)|.The paper is devoted to minimization of ec(G:T) • Over all trees with the same vertex set as G. • Over all spanning trees of G. These problems can be regarded as “congestion” problems.
Keywords :
Graph , Minimal congestion spanning tree , Cheeger constant , Isoperimetric dimension
Journal title :
Discrete Mathematics
Serial Year :
2004
Journal title :
Discrete Mathematics
Record number :
948991
Link To Document :
بازگشت