Title of article :
Direct decompositions of non-algebraic complete lattices
Author/Authors :
Friedrich Wehrung، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
11
From page :
311
To page :
321
Abstract :
For a given complete lattice L, we investigate whether L can be decomposed as a direct product of directly indecomposable lattices. We prove that this is the case if every element of L is a join of join-irreducible elements and dually, thus extending to nonalgebraic lattices a result of L. Libkin. We illustrate this by various examples and counterexamples.
Keywords :
Complete , center , Join-irreducible , Directly indecomposable , Spatial , Lattice , Direct product
Journal title :
Discrete Mathematics
Serial Year :
2003
Journal title :
Discrete Mathematics
Record number :
949058
Link To Document :
بازگشت