Title of article :
A new bound on the size of the largest critical set in a Latin square Original Research Article
Author/Authors :
Richard Bean، نويسنده , , E.S. Mahmoodian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
9
From page :
13
To page :
21
Abstract :
A critical set in an n×n array is a set C of given entries, such that there exists a unique extension of C to an n×n Latin square and no proper subset of C has this property. The cardinality of the largest critical set in any Latin square of order n is denoted by lcs(n). In 1978, Curran and van Rees proved that lcs(n)⩽n2−n. Here, we show that lcs(n)⩽n2−3n+3.
Keywords :
Latin Squares , Largest critical sets , Intercalates
Journal title :
Discrete Mathematics
Serial Year :
2003
Journal title :
Discrete Mathematics
Record number :
949148
Link To Document :
بازگشت