Title of article :
On the minimal nonzero distance between triangular embeddings of a complete graph Original Research Article
Author/Authors :
M.J. Grannell، نويسنده , , T.S. Griggs، نويسنده , , V.P. Korzhik، نويسنده , , J. ?ir??، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
12
From page :
149
To page :
160
Abstract :
Given two triangular embeddings f and f′ of a complete graph K and given a bijection φ : V(K)→V(K), denote by M(φ) the set of faces (x,y,z) of f such that (φ(x),φ(y),φ(z)) is not a face of f′. The distance between f and f′ is the minimal value of |M(φ)| as φ ranges over all bijections between the vertices of K. We consider the minimal nonzero distance between two triangular embeddings f and f′ of a complete graph. We show that 4 is the minimal nonzero distance in the case when f and f′ are both nonorientable, and that 6 is the minimal nonzero distance in each of the cases when f and f′ are orientable, and when f is orientable and f′ is nonorientable.
Keywords :
Topological embedding , Complete graph
Journal title :
Discrete Mathematics
Serial Year :
2003
Journal title :
Discrete Mathematics
Record number :
949208
Link To Document :
بازگشت