Title of article :
Chromatic equivalence classes of certain generalized polygon trees, III Original Research Article
Author/Authors :
Behnaz Omoomi، نويسنده , , Yeehock Peng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
12
From page :
223
To page :
234
Abstract :
Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromatically equivalent, if P(G)=P(H). A set of graphs S is called a chromatic equivalence class if for any graph H that is chromatically equivalent with a graph G in S, then H∈S. Peng et al. (Discrete Math. 172 (1997) 103–114), studied the chromatic equivalence classes of certain generalized polygon trees. In this paper, we continue that study and present a solution to Problem 2 in Koh and Teo (Discrete Math. 172 (1997) 59–78).
Journal title :
Discrete Mathematics
Serial Year :
2003
Journal title :
Discrete Mathematics
Record number :
949254
Link To Document :
بازگشت