Title of article :
On the average size of sets in intersecting Sperner families Original Research Article
Author/Authors :
Christian Bey، نويسنده , , Konrad Engel، نويسنده , , Gyula O.H. Katona، نويسنده , , Uwe Leck، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
8
From page :
259
To page :
266
Abstract :
We show that the average size of subsets of [n] forming an intersecting Sperner family of cardinality not less than (n−1k−1) is at least k provided that k⩽n/2−n/2+1. The statement is not true if n/2⩾k>n/2−8n+1/8+9/8.
Keywords :
Intersecting antichain , Kleitman–Milner theorem , Sperner family
Journal title :
Discrete Mathematics
Serial Year :
2002
Journal title :
Discrete Mathematics
Record number :
949341
Link To Document :
بازگشت