Title of article :
H-forming sets in graphs Original Research Article
Author/Authors :
Teresa W. Haynes، نويسنده , , Stephen T. Hedetniemi، نويسنده , , Michael A. Henning، نويسنده , , Peter J. Slater، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
11
From page :
159
To page :
169
Abstract :
For graphs G and H, a set S⊆V(G) is an H-forming set of G if for every v∈V(G)−S, there exists a subset R⊆S, where |R|=|V(H)|−1, such that the subgraph induced by R∪{v} contains H as a subgraph (not necessarily induced). The minimum cardinality of an H-forming set of G is the H-forming number γ{H}(G). The H-forming number of G is a generalization of the domination number γ(G) because γ(G)=γ{P2}(G). We show that γ(G)⩽γ{P3}(G)⩽γt(G), where γt(G) is the total domination number of G. For a nontrivial tree T, we show that γ{P3}(T)=γt(T). We also define independent P3-forming sets, give complexity results for the independent P3-forming problem, and characterize the trees having an independent P3-forming set.
Keywords :
Domination , H-forming number , Total domination , Independence
Journal title :
Discrete Mathematics
Serial Year :
2003
Journal title :
Discrete Mathematics
Record number :
949505
Link To Document :
بازگشت