Title of article :
Using minimum degree to bound average distance
Author/Authors :
R.A. Beezer، نويسنده , , J.E. Riegsecker، نويسنده , , B.A. Smith، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
7
From page :
365
To page :
371
Abstract :
We show the average distance μ of a connected graph with n vertices, e edges and minimum degree d satisfiesμ⩽⌊(n+1)n(n−1)−2ed+1⌋n(n−1).This improves conjectures of the computer program Graffiti (Fajtlowicz, Written on the wall, Conjectures made by program Graffiti, University of Houston, 1990), and He and Li (Math. Appl. 4 (1991) 28–34) and the results of Kouider and Winkler (J. Graph Theory 25 (1997) 95–99). The bound is sharp since complete graphs yield equality.
Keywords :
Graph , Average distance , Regular graph , Minimum degree , Graffiti
Journal title :
Discrete Mathematics
Serial Year :
2001
Journal title :
Discrete Mathematics
Record number :
949559
Link To Document :
بازگشت