Title of article :
Proof of the Alon–Yuster conjecture Original Research Article
Author/Authors :
J?nos Koml?s، نويسنده , , Gabor Sarkozy، نويسنده , , Endre Szemerédi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
15
From page :
255
To page :
269
Abstract :
In this paper we prove the following conjecture of Alon and Yuster. Let H be a graph with h vertices and chromatic number k. There exist constants c(H) and n0(H) such that if n⩾n0(H) and G is a graph with hn vertices and minimum degree at least (1−1/k)hn+c(H), then G contains an H-factor. In fact, we show that if H has a k-coloring with color-class sizes h1⩽h2⩽⋯⩽hk, then the conjecture is true with c(H)=hk+hk−1−1.
Journal title :
Discrete Mathematics
Serial Year :
2001
Journal title :
Discrete Mathematics
Record number :
949706
Link To Document :
بازگشت