Title of article :
The eigenmatrix of the linear association scheme on R(2,m)
Author/Authors :
Xiang-dong Hou، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
22
From page :
163
To page :
184
Abstract :
Let R(r,m) be the rth order Reed-Muller code of length 2m. For −1⩽r⩽s⩽m, the action of the general affine group AGL(m,2) on R(s,m)/R(r,m) defines a linear association scheme on R(s,m)/R(r,m). In this paper, we determine the eigenmatrix of the linear association scheme on R(2,m) (=R(2,m)/R(−1,m)). Our approach relies on the Möbius inversion and detailed calculations with the general linear group and the symplectic group over GF(2). As a consequence, we obtain explicit formulas for the weight enumerators of all cosets of R(m−3,m). Such explicit formulas were not available previously.
Keywords :
Eigenmatrix , Association scheme , M?bius inversion , Reed-Muller code , Symplectic group , Weight enumerator
Journal title :
Discrete Mathematics
Serial Year :
2001
Journal title :
Discrete Mathematics
Record number :
949759
Link To Document :
بازگشت