Title of article :
Covers and blocking sets of classical generalized quadrangles Original Research Article
Author/Authors :
J. Eisfeld، نويسنده , , L. Storme، نويسنده , , T. Sz?nyi، نويسنده , , P. Sziklai، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
17
From page :
35
To page :
51
Abstract :
This article discusses two problems on classical generalized quadrangles. It is known that the generalized quadrangle Q(4,q) arising from the parabolic quadric in PG(4,q) has a spread if and only if q is even. Hence, for q odd, the problem arises of the cardinality of the smallest set of lines of Q(4,q) covering all points of Q(4,q). We show in this paper that this set of lines must contain more than q2+1+(q−1)/3 lines. We also show that Q(4,q), q even, does not contain minimal covers of sizes q2+1+r when q⩾32 and 0
Keywords :
Covers , Blocking sets , Generalized quadrangles
Journal title :
Discrete Mathematics
Serial Year :
2001
Journal title :
Discrete Mathematics
Record number :
949767
بازگشت