Title of article :
Matchings and Hadwigerʹs Conjecture Original Research Article
Author/Authors :
Andrei Kotlov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
12
From page :
241
To page :
252
Abstract :
Assuming that a graph G on n vertices is a minimal counterexample to Hadwigerʹs Conjecture χ(G)⩽η(G), we apply the Edmonds–Gallai Structure Theorem to its complement, H, to find that H has a matching of size ⌊n/2⌋. Hence Magyar Tud. Acad. Mat. Kutató Int. Kőzl. 8 (1963) 373: χ(G)⩽⌈n/2⌉. Further, H is homeomorphic to a three-connected graph, and is of tree width at least four. The same holds for a minimal counterexample G to Colin de Verdièreʹs Conjecture μ(G)+1⩾χ(G).
Journal title :
Discrete Mathematics
Serial Year :
2002
Journal title :
Discrete Mathematics
Record number :
949928
Link To Document :
بازگشت