Title of article :
d-Disjunct matrices: bounds and Lovász Local Lemma Original Research Article
Author/Authors :
Hong-Gwa Yeh، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
11
From page :
97
To page :
107
Abstract :
A binary matrix is said to be d-disjunct if the union (or Boolean sum) of any d columns does not contain any other column. Such matrices constitute a basis for nonadaptive group testing algorithms and binary d-superimposed codes. Let t(d,n) denote the minimum number of rows for a d-disjunct matrix with n columns. In this note we study the bounds of t(d,n) and its variations. Lovász Local Lemma (Colloq. Math. Soc. Jãnos Bolyai 10 (1974) 609–627; The Probabilistic Method, Wiley, New York, 1992 (2nd Edition, 2000)) and other probabilistic methods are used to extract better bounds. For a given random t×n binary matrix, the Stein–Chen method is used to measure how ‘bad’ it is from a d-disjunct matrix.
Keywords :
d-disjunct matrix , Group testing , Lov?sz Local Lemma , Probabilistic method , Stein–Chen approximation theorem
Journal title :
Discrete Mathematics
Serial Year :
2002
Journal title :
Discrete Mathematics
Record number :
950137
Link To Document :
بازگشت