Title of article :
A note on the ultimate categorical matching in a graph
Author/Authors :
Lih-Hsing Hsu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
2
From page :
487
To page :
488
Abstract :
Let m(G) denote the number of vertices covered by a maximum matching in a graph G. The ultimate categorical matching m∗(G) is defined as m∗(G)=limn→∞ m(Gn)1/n where the categorical graph product is used. In (Discrete Math. 232 (2001) 1), Albert et al. ask that “Is there a graph G, with at least one edge, such that for all graphs H, m∗(G×H) = m∗(G)m∗(H)?”. Actually, m∗(G×H)=m∗(G)m∗(H) holds for any graphs G and H with the previous result of Hsu et al. (Discrete Math. 65 (1987) 53).
Keywords :
Graph capacity functions , Matching , Categorical product
Journal title :
Discrete Mathematics
Serial Year :
2002
Journal title :
Discrete Mathematics
Record number :
950244
Link To Document :
بازگشت