Title of article :
On Kotzigʹs conjecture concerning graphs with a unique regular path-connectivity
Author/Authors :
Yuansheng Yang، نويسنده , , Jianhua Lin، نويسنده , , Chunli Wang، نويسنده , , Kaifeng Li، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
12
From page :
287
To page :
298
Abstract :
Kotzig (see Bondy and Murty, Graph Theory with Applications, North-Holland, Amsterdam, 1976) conjectured that there exists no graph with the property that every pair of vertices is connected by a unique path of length k, k>2. Kotzig (Graph Theory and Related Topics, Academic Press, New York, 1979, pp. 358–367) has proved this conjecture for 211. Here we prove this conjecture for the remaining cases k=9,10,11.
Keywords :
Regular path-connectivity , Eulerian graph
Journal title :
Discrete Mathematics
Serial Year :
2000
Journal title :
Discrete Mathematics
Record number :
950309
Link To Document :
بازگشت