Title of article :
On hamiltonian connectedness of K1,4-free graphs
Author/Authors :
MingChu Li، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
7
From page :
279
To page :
285
Abstract :
G. Chen and R.H. Schelp proved that every 3-connected K1,4-free graph G on n vertices with ∑i=13d(vi)⩾n+4 for any independent set {v1,v2,v3} of G is hamiltonian connected. In this paper, we show that every 3-connected K1,4-free graph G∉J on at most 4δ−10 vertices is hamiltonian connected, where J is the set of exceptional graphs.
Keywords :
Hamiltonian connectedness , K1 , 4-free graphs , Minimum degrees
Journal title :
Discrete Mathematics
Serial Year :
2000
Journal title :
Discrete Mathematics
Record number :
950407
Link To Document :
بازگشت