Title of article
Bipartite Ramsey numbers and Zarankiewicz numbers Original Research Article
Author/Authors
Wayne Goddard، نويسنده , , Michael A. Henning، نويسنده , , Ortrud R. Oellermann، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2000
Pages
11
From page
85
To page
95
Abstract
The Zarankiewicz number z(s,m) is the maximum number of edges in a subgraph of K(s,s) that does not contain K(m,m) as a subgraph. The bipartite Ramsey number b(m,n) is the least positive integer b such that if the edges of K(b,b) are coloured with red and blue, then there always exists a blue K(m,m) or a red K(n,n). In this paper we calculate small exact values of z(s,2) and determine bounds for Zarankiewicz numbers in general. The latter are used to bound b(m,n) for m,n⩽6.
Keywords
Graphs , Zarankiewicz , Bicliques , Bipartite Ramsey numbers
Journal title
Discrete Mathematics
Serial Year
2000
Journal title
Discrete Mathematics
Record number
950463
Link To Document