Title of article :
Tiling the pentagon Original Research Article
Author/Authors :
Ren Ding، نويسنده , , Doris Schattschneider، نويسنده , , Tudor Zamfirescu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
12
From page :
113
To page :
124
Abstract :
Finite edge-to-edge tilings of a convex pentagon with convex pentagonal tiles are discussed. Such tilings that are also cubic are shown to be impossible in several cases. A finite tiling of a polygon P is equiangular if there is a 1-1 correspondence between the angles of P and the angles of each tile (both taken in clockwise cyclic order) so that corresponding angles are equal. It is shown that there is no cubic equiangular tiling of a convex pentagon and hence it is impossible to dissect a convex pentagon into pentagons directly similar to it.
Keywords :
Finite tiling , Dissection , Equiangular tiling , Pentagonal tiling , Cubic tiling
Journal title :
Discrete Mathematics
Serial Year :
2000
Journal title :
Discrete Mathematics
Record number :
950517
Link To Document :
بازگشت