Title of article :
Feasible edge colorings of trees with cardinality constraints Original Research Article
Author/Authors :
D. de Werra، نويسنده , , A. Hertz، نويسنده , , D. Kobler، نويسنده , , N.V.R. Mahadev، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
A variation of preemptive open shop scheduling corresponds to finding a feasible edge coloring in a bipartite multigraph with some requirements on the size of the different color classes. We show that for trees with fixed maximum degree, one can find in polynomial time an edge k-coloring where for i=1,…,k the number of edges of color i is exactly a given number hi, and each edge e gets its color from a set ϕ(e) of feasible colors, if such a coloring exists. This problem is NP-complete for general bipartite multigraphs. Applications to open shop problems with costs for using colors are described.
Keywords :
Open shop , Edge coloring , Timetabling , Feasible colors , Cost , Cardinality constraints
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics