Title of article :
Pancyclicity of claw-free hamiltonian graphs Original Research Article
Author/Authors :
H. Trommel، نويسنده , , H.J. Veldman، نويسنده , , A. Verschut، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
9
From page :
781
To page :
789
Abstract :
A graph G on n vertices is called subpancyclic if it contains cycles of every length k with 3 ⩽ k ⩽ c(G), where c(G) denotes the length of a longest cycle in G; if moreover c(G) = n, then G is called pancyclic. By a result of Flandrin et al. a claw-free graph (on at least 35 vertices) with minimum degree at least 13(n − 2) is pancyclic. This degree bound is best possible. We prove that for a claw-free graph to be subpancyclic we only need the degree condition δ > √3n + 1 − 2. Again, this degree bound is best possible. It follows directly that under the same condition a hamiltonian claw-free graph is pancyclic.
Keywords :
Claw-free graph , (Hamilton) cycle , (Sub)pancyclic , Circumference
Journal title :
Discrete Mathematics
Serial Year :
1999
Journal title :
Discrete Mathematics
Record number :
950750
Link To Document :
بازگشت