Title of article :
On Generalization of prime submodules
Author/Authors :
Ebrahimpour، M. نويسنده Shahid Bahonar University of Kerman , , Nekooei، R. نويسنده Shahid Bahonar University of Kerman ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2013
Pages :
21
From page :
919
To page :
939
Abstract :
Let $R$ be a commutative ring with identity and $M$ be a unitary‎ ‎$R$-module‎. ‎Let $\phi:S(M)\rightarrow S(M)\cup\{\emptyset\}$ be a‎ ‎function‎, ‎where $S(M)$ is the set of submodules of $M$‎. ‎Suppose‎ ‎$n\geq 2$ is a positive integer‎. ‎A proper submodule $P$ of $M$ is‎ ‎called $(n-1,n)-\phi$-prime‎, ‎if whenever $a_1,\dots,a_{n-1}\in R$‎ ‎and $x\in M$ and $a_1\dots a_{n-1}x\in P\backslash\phi(P)$‎, ‎then‎ ‎there exists $i\in\{1,\dots,n-1\}$ such that $a_1\dots‎ ‎a_{i-1}a_{i+1}\dots a_{n-1}x\in P$ or $a_1\dots a_{n-1}\in(P:M)$‎. ‎In this paper we study $(n-1,n)-\phi$-prime submodules $(n\geq‎ ‎2)$‎. ‎A number of results concerning $(n-1,n)-\phi$-prime‎ ‎submodules are given‎. ‎Modules with the property that for some‎ ‎$\phi$‎, ‎every proper submodule is $(n-1,n)-\phi$-prime‎, ‎are‎ ‎characterized and we show that under some assumptions‎ ‎$(n-1,n)$-prime submodules and $(n-1,n)-\phi_m$-prime submodules‎ ‎coincide ($n,m\geq 2$)‎.
Journal title :
Bulletin of the Iranian Mathematical Society
Serial Year :
2013
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
950760
Link To Document :
بازگشت